

The Effectiveness of Resampling Method for

Handling Class Imbalances in Software Defect

Prediction

Frieyadie

Malaysian Institute of Information

Technology (MIIT)

Universiti Kuala Lumpur

Kuala Lumpur, Malaysia

frieyadie@s.unikl.edu.my

Munaisyah Abdullah

Malaysian Institute of Information

Technology (MIIT)

Universiti Kuala Lumpur

Kuala Lumpur, Malaysia

munaisyah@unikl.edu.my

Foni Agus Setiawan

Department of

Informatics Engineering

Universitas Ibn Khaldun Bogor

Bogor, Indonesia

masagus@uika-bogor.ac.id

Abstract— Defect prediction is crucial for software products

to be high-quality and reliable. Class imbalance, however, in

which one class does much better than the other, poses a

significant challenge to flaw prediction models. This inequality

often results in discriminatory behavior towards the majority

class, resulting in poor performance in identifying the defects of

the minority class. By undersampling the dominant class,

oversampling the minority class, or combining the two,

resampling entails changing the distribution of the dataset. This

study aims to develop a robust and accurate model that can

overcome the limitations of class imbalance and improve overall

crash prediction performance. Logistic regression, a widely

used classification algorithm, offers interpretability and

flexibility, making it suitable for defect prediction. This research

investigates the effectiveness of the resampling technique in

conjunction with logistic regression to deal with the class

imbalance in defect prediction software. Accuracy and UAC

measurement result from the t-test for 12 MDP datasets show

that Logistic Regression+Sample (Bootstrapping) works much

better than Logistic Regression, with an average accuracy of

90.78% and an average AUC of 0.81.

Keywords—Resampling Technique, Class Imbalance,

Software Defect Prediction

I. INTRODUCTION

 Software defect prediction (SDP) is a crucial
problem in software engineering. [1], [2], The goal of
ensuring the quality and dependability of software products
is critical. [3]–[5] identify and mitigate potential defects in
software systems during the development and maintenance
phases. Accurate defect prediction enables organizations to
allocate resources effectively [6], prioritize testing efforts [7],
and improve software quality [8].

However, defect prediction models face a class imbalance
challenge [9], [10], where the number of instances belonging
to one class significantly outweighs the other [11]. This class
imbalance poses a significant obstacle [12] because
traditional prediction models demonstrate discriminatory
behavior towards the majority class. They perform poorly in
spotting minority class flaws.

This mismatch in class distribution might result in biased
models that fail to identify faulty cases [13]. Researchers and
practitioners have proposed various techniques to address this
issue, with resampling techniques and logistic regression
emerging as promising countermeasures. Resampling
strategies entail altering the dataset's distribution by
oversampling the minority class, undersampling the majority
class, or a mix of the two. On the other hand, logistic
regression, a widely used classification algorithm, offers
flexibility and interpretability, making it an attractive choice
for defect prediction tasks.

The class imbalance issue in SDP has been addressed
using various resampling strategies [14]. Resampling
techniques manipulate the class distribution [15] either
through an undersized majority class sample (non-defective
examples) or a significant minority class sample (defective
cases). These methods are intended to increase the accuracy
of SDP models [16], [17] by creating a more balanced
representation of the classes.

The advantages of the resampling technique include
overcoming class disappointment in the data. Reduces
variability in parameter estimates. It improves the stability of
the resulting model and produces more consistent forecasts.
The resampling technique can produce a smaller sample size
than the original sample. This can lead to a loss of variation
data which can affect the security of the resulting model.

The research objective is to evaluate the effectiveness of
resampling techniques in handling class imbalances for SDP.
The study investigates how different resampling techniques
impact the predictive performance of SDP models.

II. RELATED WORK

Malhotra & Jain's [18] results showed that using
resampling techniques significantly improved the model's
predictive ability compared to the classical boosting model in
dealing with the problem of class imbalance in software flaw
prediction. Evaluate the model using stable performance
evaluation metrics such as Balance, G-Mean, and Area
Under the Curve (AUC). Using appropriate performance
evaluation metrics such as G-Mean, Balance, and AUC can

2023 International Conference on Information Technology Research and Innovation (ICITRI)

979-8-3503-2494-5/23/$31.00 ©2023 IEEE 2220
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

 R
es

ea
rc

h
an

d
In

no
va

tio
n

(IC
IT

RI
) |

 9
79

-8
-3

50
3-

24
94

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

IT
RI

59
34

0.
20

23
.1

02
49

25
5

Authorized licensed use limited to: Universiti Kuala Lumpur. Downloaded on September 21,2023 at 13:51:03 UTC from IEEE Xplore. Restrictions apply.

help build models when handling unbalanced data. Some of
the shortcomings of this study include: 1) Only focusing on
the use of boosting-based ensemble algorithms to deal with
class imbalance problems in software flaw prediction. Many
other techniques, such as cost-sensitive resampling and
ensemble techniques, can solve this problem. 2) Only use
three datasets of open-source software projects, so the
generalization of research results is limited to these datasets.
3) Do not consider other factors affecting classification
performance, such as data distribution, cross-validation, and
dataset shifting. 4) Do not compare the performance of
boosting-based ensemble algorithms with other techniques
used in related literature.

The research conducted by Bennin, Keung, & Monden
[19] shows that resampling methods can improve software
defect classification but are ineffective for defect
prioritization. The Random Under-Sampling (RUS) method
is considered the most stable and effective resampling
method. In addition, it was found that the selection of
resampling methods and evaluation criteria can significantly
affect the performance of prediction models. The authors also
recommend using the ADASYN method for defect prediction
in unbalanced datasets. Some of the shortcomings of this
study are: 1) The use of datasets consisting only of open-
source projects, so the results cannot be generalized to
commercial projects. 2) The use of only five flaw prediction
models, so the results may not represent the performance of
other flawed prediction models. 3) Limited use of evaluation
metrics, such as accuracy, precision, and recall, without
considering other metrics, such as F1-score or areas under the
ROC curve.

Elahi, Kanwal, & Asif [20] investigated the effect of
different resampling techniques on the performance of five
classifications in software error prediction. This research
shows that resampling techniques such as RUS, Random
Under Sampling (ROS), and SMOTE help enhance
classification efficiency on imbalanced datasets. In addition,
it also shows that certain combinations of classification and
resampling techniques can produce better performance than
other combinations. Identify some threats to the validity of
the results, such as using datasets from the PROMISE
repository that may not be generalizable to actual software
datasets. Some of the shortcomings of this study are: 1) Only
used four datasets from the PROMISE repository, so the
generalization of research results is limited to these datasets.
2) Only use the average model method for ensembles, so do
not consider other ensemble methods such as stacking and
voting.

Ruchika Malhotra & Kamal [21], This study's results
suggest that using data resampling techniques, especially the
Safe-Level-SMOTE method, can improve the performance of
software maintenance prediction models on unbalanced
datasets. Different machine learning techniques can give
different results in predicting software maintenance efforts.
Some of the shortcomings of this study are as follows: 1) The
dataset used in this study consisted of only eight open-source
software projects. Therefore, the generalization of the results
of this research to other software projects may be limited. 2)

Using only two machine learning techniques, C4.5 and MLP-
CG, to build predictive software maintenance models.

Research conducted by Li et al. [22] led to creating of a
software defect prediction model that might enhance
classification efficiency using an ideal ensemble technique,
the Random Forest algorithm mixed with data sampling
technology. The study used five software flaw prediction data
sets from NASA's MDP database as experimental research
objects. The Adaboost Algorithm, the Bagging Algorithm,
the Response Surface Methodology (RSM) Algorithm, the
Random Forest (RF) Algorithm, and the Vote Algorithm
were five software defect prediction algorithms in this study
that were then compared through experiments, and the
performance evaluation results were superior to using the J48
classification. Some of the shortcomings of this study
include: 1) Only using five sets of software flaw prediction
data from NASA's MDP database as experimental research
objects. Thus, the generalization of the results of this study is
limited to the dataset used. 2) Only use data sampling
technology (SMOTE oversampling and Resample
undersampling) to optimize data quality by balancing
majority and minority categories.

Iqbal, Aftab & Matloob [14] examined several
classification models on several datasets, showing that
Random Over Sampling (ROS) performs best on most
datasets with most classification models. However, in some
datasets, such as MC2, SMOTE performed better. At the
same time, Random Under Sampling (RUS) does not perform
well except on the KC1 dataset with several classification
models. In addition, resampling techniques can solve the
class imbalance problem in most datasets, except for one
PC2. Several research deficiencies can be identified: 1) an
insufficient explanation of how the resampling technique is
selected and implemented. As well as can affect the
interpretation of software flaw prediction results. 2) There is
no sufficient explanation of how the study can be applied to
other cases beyond the dataset used in the study.

 These advantages highlight the effectiveness of
resampling techniques in improving predictive ability,
classification performance, and software flaw prediction.
They also emphasize the importance of selecting appropriate
evaluation metrics, identifying optimal resampling methods,
considering different classification and resampling technique
combinations, and understanding the performance variations
across different datasets and models.

III. RESEARCH METHODOLOGY

A. Software Defect Prediction

A binary classification issue in machine learning, software
defect prediction (SDP) determines whether a module is faulty
or defect-free [20]. Software defect prediction remains vital
research to improve software quality since software products'
increasing complexity and dependability increase the cost of
software testing. The SDP was a project focus because early
defect detection enhances software quality while lowering
costs and managing software effectively [21]. Most SDP
research techniques employ machine learning algorithms to
build predictive models from training data extracted from

2023 International Conference on Information Technology Research and Innovation (ICITRI)

23

Authorized licensed use limited to: Universiti Kuala Lumpur. Downloaded on September 21,2023 at 13:51:03 UTC from IEEE Xplore. Restrictions apply.

software repositories and then use those models to detect
software issues in test data. Within-project defect prediction
(WPDP) and cross-project defect prediction [22], [23] are two
common research topics in software defect prediction based
on distinct sources of training data. Within-Since training and
test data are typically gathered from the same software project,
WPDP believes that they must be delivered separately and
identically. Many conventional categorization techniques are
employed in WPDP to create prediction models.

B. Imbalance Class

The imbalance class in software defect prediction research
refers to the unequal distribution of defective and non-
defective modules in software defect datasets [24]. This
imbalance occurs when the number of non-defective modules
significantly outweighs the number of defective modules.

Furthermore, experts highlight the need for thorough
evaluation and experimentation when dealing with a class
imbalance in software defect prediction research. This
includes comparing different resampling techniques,
exploring the combination of resampling with other
preprocessing methods (e.g., feature selection), and assessing
the performance of predictive models using appropriate
validation strategies.

Experts aim to develop more robust and accurate models
that can effectively identify and predict software defects by
addressing the class imbalance in software defect prediction
research. The ultimate goal is to enhance software quality,
minimize the occurrence of defects, and improve the
reliability and stability of software systems.

C. Resampling Technique

Resampling techniques are potent methods used in data
analysis and machine learning to address the challenges of
imbalanced datasets. These techniques have gained significant
attention from experts in the field due to their effectiveness in
improving the performance of predictive models and tackling
class imbalance issues.

A class imbalance occurs when the distribution of classes
in a dataset is severely skewed. One class is notably
underrepresented in comparison to the others. This presents
difficulties for machine learning algorithms, which are biased
towards the majority class and struggle to catch patterns and
produce correct predictions for the minority class.

Resampling techniques offer a solution by manipulating
the dataset to create a more balanced representation of the
classes . As a result, either more members of the minority class
will be represented (oversampling), fewer members of the
majority class will be represented (undersampling), or a
hybrid strategy will be used [3].

The bootstrap resampling method estimates a statistic's
sampling distribution by resampling from the available data.
The basic equation for the bootstrap resampling method is as
follows:

1. Start with a dataset of size n, denoted as D.

2. Repeat the following steps B times (where B is the number

of bootstrap iterations):

a. Draw a random sample (with replacement) from the

original dataset D, creating a bootstrap sample D* of

the same size n.

b. Compute the desired statistic (e.g., the sample mean,

standard deviation, etc.) using the bootstrap sample

D*.

3. Collect the computed statistics from each bootstrap

iteration to obtain the bootstrap distribution.

4. Analyze the bootstrap distribution to estimate properties

such as confidence intervals or standard errors.
Denote the original dataset as D = {x₁, x₂, ..., xn}, where

xi represents an individual data point. The bootstrap
resampling method involves creating bootstrap samples D* by
randomly selecting n data points (with replacement) from D.
For example, to estimate the mean using the bootstrap
resampling method, the equation would be:

������∗� = �1/�� ∗ ∑ �� (1)

where xi is a data point in the bootstrap sample D*.

Similarly, the bootstrap resampling method can estimate
statistics such as standard deviation, median, or any other
desired measure. The key idea is to repeatedly sample from
the original dataset and compute the statistic of interest on
each bootstrap sample to approximate the sampling
distribution.

D. Logistic Regression

A straightforward logistic regression model may be used
to obtain the OR and the 95% Confidence Intervals (CI) for
any predictor, whether continuous or dichotomous [25]. The
expected result variable is G, where G = 1 means something
like renal failure has happened. G = 0 signifies the absence of
the event. Set H1 as the predictor variable. When there are
numerous predictors, generalization is made using subscript 1.
Given the predictor's value, the probability that the event will
occur may be stated using the logistic model, denoted as F(G
= 1 | H1). The fundamental assumption is that there is a linear
relationship between the predictor variable(s) and the log of
the probability that G = 1 occurs. The probability of the event
or illness occurring is represented below, given the predictor
variable, X1 (G = 1). This might be stated as

log ������ = 1|��� = ��� � �� !�|"#�
�$�� !�|"#�% &' + &��', (2)

Where β0 is the intercept and β1 is the regression
coefficient of H1. The odds log is the logit transformation, and
the coefficients are on a logarithmic scale. The model is a
linear regression model in the log odds that G = 1.
transformation derived from Equation 2. The model is a linear
regression model in the log chances that G = 1 derived from
Equation 2.

*�� = 1|���� = �
�+,-. �$�/0+/#"#�� = 123�/0+/#"#�

�+123�/0+/#"#� (3)

E. Hypothesis

 Value 0.05 (or 5%) was used as the significance level for
a statistical t-test. The following criteria were used to
determine whether to accept or reject this hypothesis test:

2023 International Conference on Information Technology Research and Innovation (ICITRI)

24

Authorized licensed use limited to: Universiti Kuala Lumpur. Downloaded on September 21,2023 at 13:51:03 UTC from IEEE Xplore. Restrictions apply.

• If the significant result exceeds 0.05, the alternative
hypothesis (H1) is rejected, and the null hypothesis (H0)
is accepted. It shows that the independent variable's
influence on the dependent variable is minimal.

• The alternative hypothesis (H1) is accepted, and the null
hypothesis (H0) is rejected if the significant value is less
than 0.05. It means that the independent variable only
partially and substantially affects the dependent variable.

F. Data Collection

 The data understanding used is public data. This dataset
is publicly available on the internet, namely 12
Downloadable datasets from the NASA (National
Aeronautics and Space Administration) Metrics Data
Programme (MDP) repository
https://github.com/klainfo/NASADefectDataset. The NASA
MDP Repository dataset is readily available and publicly
available. The dataset used is public data uses dataset D" from
NASA MDP, namely 12 Nasa MDP Repository Datasets
consisting of classes (CM1, JM1, KC1, KC3, MC1, MC2,
MW1, PC1 PC2, PC3, PC4, PC5).

G. Proposed Method

 The method proposed in this study is to improve the
performance of the Logistic Regression algorithm with the
resampling method to handle a class imbalance in predicting
software defects, furthermore, for validation using 20-fold
cross-validation. The results of measuring the algorithm's
performance use the t-test (t-test) to determine differences in
model performance after and before the resampling model is
applied.

Fig. 1. Proposed Model

Fig. 1 displays the use of the NASA MDP public dataset
repository that researchers have commonly used in Software
Engineering research [26]. NASA MDP data is devoted to
software defects and failures research topics. Table 1 shows
the Nasa MDP Repository Dataset.

TABLE I. PERCENTAGE 12 DATASET

 Table I shows the number of disabled classes from the
characteristics and the number of modules, faulty modules,
and non-disabled modules from each dataset. Class jealousy
(Imbalance Class) from the defect and non-defect classes
influence high or low percentage outcomes.

IV. RESULTS AND DISCUSSION

Using the Logistic Regression (L.R.) classifier method,
the approach was put to the test. The experimental findings
are shown in Table II. The data are precision, positive
predictive value (PPV) or accuracy, recall, specificity,
negative predictive value (NPV) or F.P. rate, F-Measure, and
AUC.

TABLE II. LOGISTIC REGRESSION EXPERIMENT RESULT

According to the experimental findings in Table II, the 12
datasets' average accuracy is 86.96%, and their average AUC
is 0.73.

TABLE III. LOGISTIC REGRESSION+SAMPLE (BOOTSTRAPPING)

EXPERIMENT RESULT

2023 International Conference on Information Technology Research and Innovation (ICITRI)

25

Authorized licensed use limited to: Universiti Kuala Lumpur. Downloaded on September 21,2023 at 13:51:03 UTC from IEEE Xplore. Restrictions apply.

Table III displays the experimental findings, which reveal
that the average accuracy in the 12 datasets is 90.78%, and
the average AUC is 0.81. Fig. 2 shows that dealing with class
imbalance improves model performance outcomes in the
NASA MDP dataset. As seen in Fig. 2, the resulting
performance difference is negligible.

Fig. 2. Image of Accuracy Measurement Recap on Software Defect

Prediction

Tables II and table III give the findings of a comparison of

Area Under Curve (AUC) L.R. and L.R. with Resampling

(L.R. + Sample (Bootstrapping) after Fig. 3.

Fig. 3. Image of AUC Measurement Recap on Software Defect Prediction

Table III compares AUC LR and LR + Sample

(Bootstrapping). The AUC measurement graph shows

improved performance after applying the resampling

approach to datasets with class imbalance, as shown in Fig.

3, with improved performance on CM1, JM1, KC1, KC3,

MC1, MC2, MW1, and PC1. The PC2 and PC5 datasets

showed no substantial increase in value.

 The paired sample t-test for the Logistic Regression

accuracy variable and the Logistic Regression + Sample

(Bootstrapping) variable can be seen in Table IV.

TABLE IV. PAIRED SAMPLE T-TEST ACCURACY LOGISTIC REGRESSION DAN

LOGISTIC REGRESSION+SAMPLE (BOOTSTRAPPING)

 From the results of the paired sample t-test in Table IV,
hypothetical conclusions can be drawn based on the
comparison of t count and t table, also based on probability
values. The calculated t value represented by t Stat is
2.225745863. The table t value represented by t Critical two-
tail is 2.20098516, so it can be ascertained that the calculated
t value of the table t > which means H0 is not accepted and H1
is accepted, meaning that there is a difference between the
accuracy results of Logistic Regression and Logistic
Regression+Sample (Bootstrapping). In contrast, the
probability value is known to be 0.047881574. Then it can be
seen that the probability value < 0.05, which means H0 failed
to be accepted and H1 was accepted, meaning that there is a
significant difference from the average accuracy of Logistic
Regression and Logistic Regression + Sample
(Bootstrapping). The accuracy results show Logistic
Regression+Sample (Bootstrapping) higher than Logistic
Regression.

TABLE V. PAIRED SAMPLE T-TEST AUC LOGISTIC REGRESSION AND

LOGISTIC REGRESSION+ SAMPLE (BOOTSTRAPPING)

 In Table V, it is known that the probability value is
0.009331619, so it can be seen that the probability value <
0.05, which means H0 is not accepted and H1 is accepted,
meaning that there is a significant difference from the average
AUC Logistic Regression and Logistic Regression + Sample
(Bootstrapping), AUC results show Logistic Regression +
Sample (Bootstrapping) higher than Logistic Regression.

V. CONCLUSION

 This study assessed the effectiveness of various
resampling methods in dealing with a class imbalance in
predicting software defects. It does not go too far into how
this technique can improve predictive model performance
and reduce the impact of class imbalance. Based on the t-test
results concerning the accuracy, the probability value (p-
value) obtained (0.047881574) is less than 0.05, further

2023 International Conference on Information Technology Research and Innovation (ICITRI)

26

Authorized licensed use limited to: Universiti Kuala Lumpur. Downloaded on September 21,2023 at 13:51:03 UTC from IEEE Xplore. Restrictions apply.

supporting the rejection of H0 and acceptance of H1. At the
same time, it is stated that the accuracy of Logistic
Regression + Sample (Bootstrapping) is higher than Logistic
Regression. In the t-test on AUC, the probability value
obtained from the paired sample t-test (0.009331619) is also
smaller than 0.05, causing H0 to be rejected and H1 to be
accepted. Therefore, there is a significant difference in the
average AUC between Logistic Regression and Logistic
Regression+ Sample (Bootstrapping). The AUC results
showed that Logistic Regression+Sample (Bootstrapping)
has a higher AUC than Logistic Regression. In conclusion,
Logistic Regression + Sample (Bootstrapping) performs
much better than Logistic Regression in accuracy and AUC.

REFERENCES

[1] C. L. Prabha and N. Shivakumar, "Software Defect Prediction Using

Machine Learning Techniques," Proc. 4th Int. Conf. Trends Electron.

Informatics, ICOEI 2020, pp. 728–733, Jun. 2020.

[2] M. A. Khan, N. S. Elmitwally, S. Abbas, S. Aftab, M. Ahmad, M.

Fayaz, et al., "Software defect prediction using artificial neural
networks: A systematic literature review", Sci. Program., vol. 2022,

pp. 1-10, May 2022.

[3] S. Goyal, "Handling Class-Imbalance with KNN (Neighbourhood)

Under-Sampling for Software Defect Prediction," Artif. Intell. Rev.,

vol. 55, no. 3, pp. 2023–2064, Mar. 2022.

[4] M. Pandit et al., "Towards Design and Feasibility Analysis of DePaaS:

AI-Based Global Unified Software Defect Prediction Framework,"
Appl. Sci. 2022, Vol. 12, Page 493, vol. 12, no. 1, p. 493, Jan. 2022.

[5] J. Pachouly, S. Ahirrao, K. Kotecha, G. Selvachandran, and A.
Abraham, "A systematic literature review on software defect prediction

using artificial intelligence: Datasets, Data Validation Methods,

Approaches, and Tools," Eng. Appl. Artif. Intell., vol. 111, p. 104773,
May 2022.

[6] M. K. Thota, F. H. Shajin, and P. Rajesh, "Survey on software defect
prediction techniques," Int. J. Appl. Sci. Eng., vol. 17, no. 4, pp. 331–

344, Jan. 2020.

[7] C. Ni, X. Xia, D. Lo, X. Chen, and Q. Gu, "Revisiting Supervised and

Unsupervised Methods for Effort-Aware Cross-Project Defect

Prediction," IEEE Trans. Softw. Eng., vol. 48, no. 3, pp. 786–802, Mar.
2022.

[8] S. Wang, J. Wang, J. Nam and N. Nagappan, "Continuous software bug
prediction", Proc. 15th ACM/IEEE Int. Symp. Empirical Softw. Eng.

Meas. (ESEM), pp. 1-12, Oct. 2021

[9] A. Balaram and S. Vasundra, "Prediction of software fault-prone

classes using ensemble random forest with adaptive synthetic sampling
algorithm," Autom. Softw. Eng., vol. 29, no. 1, pp. 1–21, May 2022.

[10] S. Sharma, A. Gosain, and S. Jain, "A Review of the Oversampling
Techniques in Class Imbalance Problem," pp. 459–472, 2022.

[11] R. Sauber-Cole and T. M. Khoshgoftaar, "The use of generative
adversarial networks to alleviate class imbalance in tabular data: a

survey," J. Big Data, vol. 9, no. 1, pp. 1–37, Dec. 2022.

[12] A. Z. Zakaria, A. Selamat, L. K. Cheng, and O. Krejcar, "Improving
Class Imbalance Detection And Classification Performance: A New

Potential of Combination Resample and Random Forest," 2022 IEEE

Int. Conf. Comput. ICOCO 2022, pp. 316–323, 2022.

[13] L. Gong, S. Jiang, and L. Jiang, "Tackling Class Imbalance Problem in

Software Defect Prediction through Cluster-Based Over-Sampling
with Filtering," IEEE Access, vol. 7, pp. 145725–145737, 2019.

[14] A. Iqbal, S. Aftab, and F. Matloob, "Performance analysis of
resampling techniques on class imbalance issue in software defect

prediction," I.J. Inf. Technol. Comput. Sci., vol. 11, no. 11, pp. 44–53,

2019.

[15] S. Feng, J. Keung, X. Yu, Y. Xiao, and M. Zhang, "Investigation on

the stability of SMOTE-based oversampling techniques in software
defect prediction," Inf. Softw. Technol., vol. 139, p. 106662, Nov. 2021.

[16] A. F. Iswafaza and S. Rochimah, "Software Defect Prediction Using a
Combination of Oversampling and Undersampling Methods," pp. 127–

132, Mar. 2023.

[17] A. O. Balogun, R. O. Oladele, H. A. Mojeed, B. Amin-balogun, V. E.

Adeyemo, and T. O. Aro, "Performance Analysis of Selected

Clustering Techniques for Software Defects Prediction," African J.
Comput. ICT, vol. 12, no. 2, pp. 30–42, 2019.

[18] R. Malhotra, "Handling imbalanced data using ensemble learning in
software defect prediction," Proceedings of the Confluence 2020 - 10th

International Conference on Cloud Computing, Data Science and

Engineering. pp. 300–304, 2020.

[19] K. E. Bennin, J. W. Keung, and A. Monden, "On the relative value of

data resampling approaches for software defect prediction," Empir.
Softw. Eng., vol. 24, no. 2, pp. 602–636, 2019.

[20] Y. Liu, W. Zhang, G. Qin, and J. Zhao, "A comparative study on the
effect of data imbalance on software defect prediction," Procedia

Comput. Sci., vol. 214, no. C, pp. 1603–1616, Jan. 2022.

[21] M. Prashanthi, G. Sumalatha, K. Mamatha, and K. Lavanya, "Software

Defect Prediction Survey Introducing Innovations with Multiple

Techniques," Cogn. Sci. Technol., pp. 783–793, 2023.

[22] Y. Zhao, Y. Zhu, Q. Yu, and X. Chen, "Cross-Project Defect Prediction

Considering Multiple Data Distribution Simultaneously," Symmetry
2022, Vol. 14, Page 401, vol. 14, no. 2, p. 401, Feb. 2022.

[23] Y. Z. Bala, P. Abdul Samat, K. Y. Sharif, and N. Manshor, "Improving
Cross-Project Software Defect Prediction Method Through

Transformation and Feature Selection Approach," IEEE Access, vol.
11, pp. 2318–2326, 2023.

[24] R. Malhotra, A. A. Khan, and A. Khera, "Simplify Your Neural
Networks: An Empirical Study on Cross-Project Defect Prediction,"

Lect. Notes Data Eng. Commun. Technol., vol. 75, pp. 85–98, 2022.

[25] T. G. Nick and K. M. Campbell, "Logistic Regression," in Methods in

Molecular Biology, vol. 404: Topics in Biostatistics, W. T. Ambrosius,

Ed. Totowa, NJ: Humana Press Inc., 2007, pp. 273–301.

 [26] A. Khalid, G. Badshah, N. Ayub, M. Shiraz, and M. Ghouse, "Software

Defect Prediction Analysis Using Machine Learning Techniques,"
Sustain. 2023, Vol. 15, Page 5517, vol. 15, no. 6, p. 5517, Mar. 2023.

2023 International Conference on Information Technology Research and Innovation (ICITRI)

27

Authorized licensed use limited to: Universiti Kuala Lumpur. Downloaded on September 21,2023 at 13:51:03 UTC from IEEE Xplore. Restrictions apply.

