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Abstract— Defect prediction is crucial for software products 

to be high-quality and reliable. Class imbalance, however, in 

which one class does much better than the other, poses a 

significant challenge to flaw prediction models. This inequality 

often results in discriminatory behavior towards the majority 

class, resulting in poor performance in identifying the defects of 

the minority class. By undersampling the dominant class, 

oversampling the minority class, or combining the two, 

resampling entails changing the distribution of the dataset. This 

study aims to develop a robust and accurate model that can 

overcome the limitations of class imbalance and improve overall 

crash prediction performance. Logistic regression, a widely 

used classification algorithm, offers interpretability and 

flexibility, making it suitable for defect prediction. This research 

investigates the effectiveness of the resampling technique in 

conjunction with logistic regression to deal with the class 

imbalance in defect prediction software. Accuracy and UAC 

measurement result from the t-test for 12 MDP datasets show 

that Logistic Regression+Sample (Bootstrapping) works much 

better than Logistic Regression, with an average accuracy of 

90.78% and an average AUC of 0.81. 

Keywords—Resampling Technique, Class Imbalance, 

Software Defect Prediction 

I. INTRODUCTION 

 Software defect prediction (SDP) is a crucial 
problem in software engineering. [1], [2], The goal of 
ensuring the quality and dependability of software products 
is critical. [3]–[5] identify and mitigate potential defects in 
software systems during the development and maintenance 
phases. Accurate defect prediction enables organizations to 
allocate resources effectively [6], prioritize testing efforts [7], 
and improve software quality [8].  

However, defect prediction models face a class imbalance 
challenge [9], [10], where the number of instances belonging 
to one class significantly outweighs the other [11]. This class 
imbalance poses a significant obstacle [12] because 
traditional prediction models demonstrate discriminatory 
behavior towards the majority class. They perform poorly in 
spotting minority class flaws.  

This mismatch in class distribution might result in biased 
models that fail to identify faulty cases [13]. Researchers and 
practitioners have proposed various techniques to address this 
issue, with resampling techniques and logistic regression 
emerging as promising countermeasures. Resampling 
strategies entail altering the dataset's distribution by 
oversampling the minority class, undersampling the majority 
class, or a mix of the two. On the other hand, logistic 
regression, a widely used classification algorithm, offers 
flexibility and interpretability, making it an attractive choice 
for defect prediction tasks. 

The class imbalance issue in SDP has been addressed 
using various resampling strategies [14]. Resampling 
techniques manipulate the class distribution [15] either 
through an undersized majority class sample (non-defective 
examples) or a significant minority class sample (defective 
cases). These methods are intended to increase the accuracy 
of SDP models [16], [17] by creating a more balanced 
representation of the classes. 

The advantages of the resampling technique include 
overcoming class disappointment in the data. Reduces 
variability in parameter estimates. It improves the stability of 
the resulting model and produces more consistent forecasts. 
The resampling technique can produce a smaller sample size 
than the original sample. This can lead to a loss of variation 
data which can affect the security of the resulting model. 

The research objective is to evaluate the effectiveness of 
resampling techniques in handling class imbalances for SDP. 
The study investigates how different resampling techniques 
impact the predictive performance of SDP models. 

II. RELATED WORK 

Malhotra & Jain's [18] results showed that using 
resampling techniques significantly improved the model's 
predictive ability compared to the classical boosting model in 
dealing with the problem of class imbalance in software flaw 
prediction. Evaluate the model using stable performance 
evaluation metrics such as Balance, G-Mean, and Area  
Under the Curve (AUC). Using appropriate performance 
evaluation metrics such as G-Mean, Balance, and AUC can 
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help build models when handling unbalanced data. Some of 
the shortcomings of this study include: 1) Only focusing on 
the use of boosting-based ensemble algorithms to deal with 
class imbalance problems in software flaw prediction. Many 
other techniques, such as cost-sensitive resampling and 
ensemble techniques, can solve this problem. 2) Only use 
three datasets of open-source software projects, so the 
generalization of research results is limited to these datasets. 
3) Do not consider other factors affecting classification 
performance, such as data distribution, cross-validation, and 
dataset shifting. 4) Do not compare the performance of 
boosting-based ensemble algorithms with other techniques 
used in related literature. 

The research conducted by Bennin, Keung, & Monden 
[19] shows that resampling methods can improve software 
defect classification but are ineffective for defect 
prioritization. The Random Under-Sampling (RUS) method 
is considered the most stable and effective resampling 
method. In addition, it was found that the selection of 
resampling methods and evaluation criteria can significantly 
affect the performance of prediction models. The authors also 
recommend using the ADASYN method for defect prediction 
in unbalanced datasets. Some of the shortcomings of this 
study are: 1) The use of datasets consisting only of open-
source projects, so the results cannot be generalized to 
commercial projects. 2) The use of only five flaw prediction 
models, so the results may not represent the performance of 
other flawed prediction models. 3) Limited use of evaluation 
metrics, such as accuracy, precision, and recall, without 
considering other metrics, such as F1-score or areas under the 
ROC curve.  

Elahi, Kanwal, & Asif [20] investigated the effect of 
different resampling techniques on the performance of five 
classifications in software error prediction. This research 
shows that resampling techniques such as RUS, Random 
Under  Sampling (ROS), and SMOTE help enhance 
classification efficiency on imbalanced datasets. In addition, 
it also shows that certain combinations of classification and 
resampling techniques can produce better performance than 
other combinations. Identify some threats to the validity of 
the results, such as using datasets from the PROMISE 
repository that may not be generalizable to actual software 
datasets. Some of the shortcomings of this study are: 1) Only 
used four datasets from the PROMISE repository, so the 
generalization of research results is limited to these datasets. 
2) Only use the average model method for ensembles, so do 
not consider other ensemble methods such as stacking and 
voting. 

Ruchika Malhotra & Kamal  [21], This study's results 
suggest that using data resampling techniques, especially the 
Safe-Level-SMOTE method, can improve the performance of 
software maintenance prediction models on unbalanced 
datasets. Different machine learning techniques can give 
different results in predicting software maintenance efforts. 
Some of the shortcomings of this study are as follows: 1) The 
dataset used in this study consisted of only eight open-source 
software projects. Therefore, the generalization of the results 
of this research to other software projects may be limited. 2) 

Using only two machine learning techniques, C4.5 and MLP-
CG, to build predictive software maintenance models. 

Research conducted by Li et al. [22] led to creating of a 
software defect prediction model that might enhance 
classification efficiency using an ideal ensemble technique, 
the Random Forest algorithm mixed with data sampling 
technology. The study used five software flaw prediction data 
sets from NASA's MDP database as experimental research 
objects. The Adaboost Algorithm, the Bagging Algorithm, 
the Response Surface Methodology (RSM) Algorithm, the 
Random Forest (RF) Algorithm, and the Vote Algorithm 
were five software defect prediction algorithms in this study 
that were then compared through experiments, and the 
performance evaluation results were superior to using the J48 
classification. Some of the shortcomings of this study 
include: 1) Only using five sets of software flaw prediction 
data from NASA's MDP database as experimental research 
objects. Thus, the generalization of the results of this study is 
limited to the dataset used. 2) Only use data sampling 
technology (SMOTE oversampling and Resample 
undersampling) to optimize data quality by balancing 
majority and minority categories. 

Iqbal, Aftab & Matloob [14] examined several 
classification models on several datasets, showing that 
Random Over Sampling (ROS) performs best on most 
datasets with most classification models. However, in some 
datasets, such as MC2, SMOTE performed better. At the 
same time, Random Under Sampling (RUS) does not perform 
well except on the KC1 dataset with several classification 
models. In addition, resampling techniques can solve the 
class imbalance problem in most datasets, except for one 
PC2. Several research deficiencies can be identified: 1) an 
insufficient explanation of how the resampling technique is 
selected and implemented. As well as can affect the 
interpretation of software flaw prediction results. 2) There is 
no sufficient explanation of how the study can be applied to 
other cases beyond the dataset used in the study. 

 These advantages highlight the effectiveness of 
resampling techniques in improving predictive ability, 
classification performance, and software flaw prediction. 
They also emphasize the importance of selecting appropriate 
evaluation metrics, identifying optimal resampling methods, 
considering different classification and resampling technique 
combinations, and understanding the performance variations 
across different datasets and models. 

III. RESEARCH METHODOLOGY 

A. Software Defect Prediction 

A binary classification issue in machine learning, software 
defect prediction (SDP) determines whether a module is faulty 
or defect-free [20]. Software defect prediction remains vital 
research to improve software quality since software products' 
increasing complexity and dependability increase the cost of 
software testing. The SDP was a project focus because early 
defect detection enhances software quality while lowering 
costs and managing software effectively [21]. Most SDP 
research techniques employ machine learning algorithms to 
build predictive models from training data extracted from 
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software repositories and then use those models to detect 
software issues in test data. Within-project defect prediction 
(WPDP)  and cross-project defect prediction [22], [23] are two 
common research topics in software defect prediction based 
on distinct sources of training data. Within-Since training and 
test data are typically gathered from the same software project, 
WPDP believes that they must be delivered separately and 
identically. Many conventional categorization techniques are 
employed in WPDP to create prediction models. 

B. Imbalance Class 

The imbalance class in software defect prediction research 
refers to the unequal distribution of defective and non-
defective modules in software defect datasets [24]. This 
imbalance occurs when the number of non-defective modules 
significantly outweighs the number of defective modules. 

Furthermore, experts highlight the need for thorough 
evaluation and experimentation when dealing with a class 
imbalance in software defect prediction research. This 
includes comparing different resampling techniques, 
exploring the combination of resampling with other 
preprocessing methods (e.g., feature selection), and assessing 
the performance of predictive models using appropriate 
validation strategies. 

Experts aim to develop more robust and accurate models 
that can effectively identify and predict software defects by 
addressing the class imbalance in software defect prediction 
research. The ultimate goal is to enhance software quality, 
minimize the occurrence of defects, and improve the 
reliability and stability of software systems. 

C. Resampling Technique 

Resampling techniques are potent methods used in data 
analysis and machine learning to address the challenges of 
imbalanced datasets. These techniques have gained significant 
attention from experts in the field due to their effectiveness in 
improving the performance of predictive models and tackling 
class imbalance issues. 

A class imbalance occurs when the distribution of classes 
in a dataset is severely skewed. One class is notably 
underrepresented in comparison to the others. This presents 
difficulties for machine learning algorithms, which are biased 
towards the majority class and struggle to catch patterns and 
produce correct predictions for the minority class. 

Resampling techniques offer a solution by manipulating 
the dataset to create a more balanced representation of the 
classes . As a result, either more members of the minority class 
will be represented (oversampling), fewer members of the 
majority class will be represented (undersampling), or a 
hybrid strategy will be used [3]. 

The bootstrap resampling method estimates a statistic's 
sampling distribution by resampling from the available data. 
The basic equation for the bootstrap resampling method is as 
follows: 

1. Start with a dataset of size n, denoted as D. 

2. Repeat the following steps B times (where B is the number 

of bootstrap iterations): 

a. Draw a random sample (with replacement) from the 

original dataset D, creating a bootstrap sample D* of 

the same size n. 

b. Compute the desired statistic (e.g., the sample mean, 

standard deviation, etc.) using the bootstrap sample 

D*. 

3. Collect the computed statistics from each bootstrap 

iteration to obtain the bootstrap distribution. 

4. Analyze the bootstrap distribution to estimate properties 

such as confidence intervals or standard errors. 
Denote the original dataset as D = {x₁, x₂, ..., xn}, where 

xi represents an individual data point. The bootstrap 
resampling method involves creating bootstrap samples D* by 
randomly selecting n data points (with replacement) from D. 
For example, to estimate the mean using the bootstrap 
resampling method, the equation would be: 

������∗� =  �1/�� ∗  ∑ ��   (1) 

where xi is a data point in the bootstrap sample D*. 

Similarly, the bootstrap resampling method can estimate 
statistics such as standard deviation, median, or any other 
desired measure. The key idea is to repeatedly sample from 
the original dataset and compute the statistic of interest on 
each bootstrap sample to approximate the sampling 
distribution. 

D. Logistic Regression 

A straightforward logistic regression model may be used 
to obtain the OR and the 95% Confidence Intervals (CI) for 
any predictor, whether continuous or dichotomous [25]. The 
expected result variable is G, where G = 1 means something 
like renal failure has happened. G = 0 signifies the absence of 
the event. Set H1 as the predictor variable. When there are 
numerous predictors, generalization is made using subscript 1. 
Given the predictor's value, the probability that the event will 
occur may be stated using the logistic model, denoted as F(G 
= 1 | H1). The fundamental assumption is that there is a linear 
relationship between the predictor variable(s) and the log of 
the probability that G = 1 occurs. The probability of the event 
or illness occurring is represented below, given the predictor 
variable, X1 (G = 1). This might be stated as 

log ������ = 1|��� = ��� � �� !�|"#�
�$�� !�|"#�% &' + &��',  (2) 

Where β0 is the intercept and β1 is the regression 
coefficient of H1. The odds log is the logit transformation, and 
the coefficients are on a logarithmic scale. The model is a 
linear regression model in the log odds that G = 1. 
transformation derived from Equation 2. The model is a linear 
regression model in the log chances that G = 1 derived from 
Equation 2. 

*�� = 1|���� = �
�+,-. �$�/0+/#"#�� =  123�/0+/#"#�

�+123�/0+/#"#�   (3)  

E. Hypothesis 

 Value 0.05 (or 5%) was used as the significance level for 
a statistical t-test. The following criteria were used to 
determine whether to accept or reject this hypothesis test:  
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• If the significant result exceeds 0.05, the alternative 
hypothesis (H1) is rejected, and the null hypothesis (H0) 
is accepted. It shows that the independent variable's 
influence on the dependent variable is minimal.  

• The alternative hypothesis (H1) is accepted, and the null 
hypothesis (H0) is rejected if the significant value is less 
than 0.05. It means that the independent variable only 
partially and substantially affects the dependent variable. 

F. Data Collection 

 The data understanding used is public data. This dataset 
is publicly available on the internet, namely 12 
Downloadable datasets from the NASA (National 
Aeronautics and Space Administration) Metrics Data 
Programme (MDP) repository 
https://github.com/klainfo/NASADefectDataset. The NASA 
MDP Repository dataset is readily available and publicly 
available. The dataset used is public data uses dataset D" from 
NASA MDP, namely 12 Nasa MDP Repository Datasets 
consisting of classes (CM1, JM1, KC1, KC3, MC1, MC2, 
MW1, PC1 PC2, PC3, PC4, PC5). 

G. Proposed Method 

 The method proposed in this study is to improve the 
performance of the Logistic Regression algorithm with the 
resampling method to handle a class imbalance in predicting 
software defects, furthermore, for validation using 20-fold 
cross-validation. The results of measuring the algorithm's 
performance use the t-test (t-test) to determine differences in 
model performance after and before the resampling model is 
applied. 

 

Fig. 1. Proposed Model 

Fig. 1 displays the use of the NASA MDP public dataset 
repository that researchers have commonly used in Software 
Engineering research [26]. NASA MDP data is devoted to 
software defects and failures research topics. Table 1 shows 
the Nasa MDP Repository Dataset. 

TABLE I. PERCENTAGE 12 DATASET 

 

 Table I shows the number of disabled classes from the 
characteristics and the number of modules, faulty modules, 
and non-disabled modules from each dataset. Class jealousy 
(Imbalance Class) from the defect and non-defect classes 
influence high or low percentage outcomes. 

IV. RESULTS AND DISCUSSION 

Using the Logistic Regression (L.R.) classifier method, 
the approach was put to the test. The experimental findings 
are shown in Table II. The data are precision, positive 
predictive value (PPV) or accuracy, recall, specificity, 
negative predictive value (NPV) or F.P. rate, F-Measure, and 
AUC.  

TABLE II. LOGISTIC REGRESSION EXPERIMENT RESULT 

 
 
According to the experimental findings in Table II, the 12 
datasets' average accuracy is 86.96%, and their average AUC 
is 0.73. 

TABLE III. LOGISTIC REGRESSION+SAMPLE (BOOTSTRAPPING) 

EXPERIMENT RESULT 
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Table III displays the experimental findings, which reveal 
that the average accuracy in the 12 datasets is 90.78%, and 
the average AUC is 0.81. Fig. 2 shows that dealing with class 
imbalance improves model performance outcomes in the 
NASA MDP dataset. As seen in Fig. 2, the resulting 
performance difference is negligible. 

 
Fig. 2.  Image of Accuracy Measurement Recap on Software Defect 

Prediction 

Tables II and table III give the findings of a comparison of 

Area Under Curve (AUC) L.R. and L.R. with Resampling 

(L.R. + Sample (Bootstrapping) after Fig. 3. 

 

 
Fig. 3. Image of AUC Measurement Recap on Software Defect Prediction 

Table III compares AUC LR and LR + Sample 

(Bootstrapping). The AUC measurement graph shows 

improved performance after applying the resampling 

approach to datasets with class imbalance, as shown in Fig. 

3, with improved performance on CM1, JM1, KC1, KC3, 

MC1, MC2, MW1, and PC1. The PC2 and PC5 datasets 

showed no substantial increase in value. 

 The paired sample t-test for the Logistic Regression 

accuracy variable and the Logistic Regression + Sample 

(Bootstrapping) variable can be seen in Table IV. 

TABLE IV. PAIRED SAMPLE T-TEST ACCURACY LOGISTIC REGRESSION DAN 

LOGISTIC REGRESSION+SAMPLE (BOOTSTRAPPING) 

 

 From the results of the paired sample t-test in Table IV, 
hypothetical conclusions can be drawn based on the 
comparison of t count and t table, also based on probability 
values. The calculated t value represented by t Stat is 
2.225745863. The table t value represented by t Critical two-
tail is 2.20098516, so it can be ascertained that the calculated 
t value of the table t > which means H0 is not accepted and H1 
is accepted, meaning that there is a difference between the 
accuracy results of Logistic Regression and Logistic 
Regression+Sample (Bootstrapping). In contrast, the 
probability value is known to be 0.047881574. Then it can be 
seen that the probability value < 0.05, which means H0 failed 
to be accepted and H1 was accepted, meaning that there is a 
significant difference from the average accuracy of Logistic 
Regression and Logistic Regression + Sample 
(Bootstrapping). The accuracy results show Logistic 
Regression+Sample (Bootstrapping) higher than Logistic 
Regression. 

TABLE V. PAIRED SAMPLE T-TEST AUC LOGISTIC REGRESSION AND 

LOGISTIC REGRESSION+ SAMPLE (BOOTSTRAPPING) 

 

 In Table V, it is known that the probability value is 
0.009331619, so it can be seen that the probability value < 
0.05, which means H0 is not accepted and H1 is accepted, 
meaning that there is a significant difference from the average 
AUC Logistic Regression and Logistic Regression + Sample 
(Bootstrapping), AUC results show Logistic Regression + 
Sample (Bootstrapping) higher than Logistic Regression. 

V. CONCLUSION 

 This study assessed the effectiveness of various 
resampling methods in dealing with a class imbalance in 
predicting software defects. It does not go too far into how 
this technique can improve predictive model performance 
and reduce the impact of class imbalance. Based on the t-test 
results concerning the accuracy, the probability value (p-
value) obtained (0.047881574) is less than 0.05, further 
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supporting the rejection of H0 and acceptance of H1. At the 
same time, it is stated that the accuracy of Logistic 
Regression + Sample (Bootstrapping) is higher than Logistic 
Regression. In the t-test on AUC, the probability value 
obtained from the paired sample t-test (0.009331619) is also 
smaller than 0.05, causing H0 to be rejected and H1 to be 
accepted. Therefore, there is a significant difference in the 
average AUC between Logistic Regression and Logistic 
Regression+ Sample (Bootstrapping). The AUC results 
showed that Logistic Regression+Sample (Bootstrapping) 
has a higher AUC than Logistic Regression. In conclusion, 
Logistic Regression + Sample (Bootstrapping) performs 
much better than Logistic Regression in accuracy and AUC. 
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